Автономная некоммерческая организация высшего образования «Открытый университет экономики, управления и права» (АНО ВО ОУЭП)

УТВЕРЖДАЮ

Ректор АНО ВО ОУЭП Фокина В.Н.

«25» июня 2024 г.

Решение Ученого Совета АНО ВО ОУЭП

Протокол № 11 от «25» июня 2024 г.

09.03.01 «Информатика и вычислительная техника»

Направленность (профиль): Информатика и вычислительная техника

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (МАТЕРИАЛОВ)

Приложение 1 по компетенциям

Оценочные материалы для проверки сформированности компетенции

ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

Оценочные материалы для проверки сформированности компетенции

ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

ОПК-1.1. Применяет естественнонаучные и общеинженерные знания в профессиональной деятельности

ОПК-1.2. Применяет методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

Компетенция формируется дисциплинами:

Линейная алгебра	1 семестр
Математический анализ	2 семестр
Физика	2 семестр
Математическая логика и теория алгоритмов	3 семестр
Статистика	3 семестр
Дискретная математика	4 семестр
Вычислительная математика	4 семестр
Эконометрика	4 семестр
Математическое моделирование экономических систем	5 семестр
Теория вероятностей и математическая статистика	4 семестр
Исследование операций	5 семестр
Электротехника, электроника и схемотехника	5 семестр

Вопросы и задания для проверки сформированности компетенции

Дисциплина «Линейная алгебра»

No	Понятие	Определение
1.	Вектор	Вектор: - это объект, который имеет направление и модуль (длину). Он
		представляется в виде упорядоченного набора чисел, называемых компонентами или
		координатами, и обозначается обычно как столбец или строка чисел. Векторы могут
		быть сложены, умножены на число и скалярно умножены.
2.	Линейное пространство	Линейное пространство - это набор векторов, на котором определены операции
		сложения и умножения на число, удовлетворяющие определенным условиям.
		Линейное пространство может быть двумерным (плоскость), трехмерным
		(пространство), а также иметь любую другую размерность.
3.	Линейное преобразование	Линейное преобразование - это функция, которая преобразует векторы одного
		линейного пространства в векторы другого линейного пространства. Линейное
		преобразование сохраняет линейные комбинации векторов и удовлетворяет свойству
		пространственной однородности.
4.	Матрица	Матрица - это прямоугольная таблица чисел, расположенных в строках и столбцах.
		Она используется для представления системы линейных уравнений и выполнения
		линейных преобразований. В матрицах операции сложения, умножения на число и
		умножение матриц могут быть выполнены.
5.	Система линейных	Система линейных уравнений - это набор одновременных линейных уравнений,
	уравнений	которые содержат неизвестные переменные. Решение системы линейных уравнений
		- это набор значений переменных, при которых каждое уравнение системы
		выполняется одновременно.
6.	Собственные значения и	Собственные значения и собственные векторы связаны с линейными
	собственные векторы	преобразованиями. Собственное значение - это число, которое определяет

		масштабирование, выполненное линейным преобразованием вдоль
		соответствующего собственного вектора. Собственный вектор - это вектор, который
		остается неизменным кроме изменения масштаба при применении линейного
		преобразования.
7.	Транспонированная	Матрица, полученная путем замены строк на столбцы и столбцов на строки исходной
	матриц	матрицы.
8.	Обратная матрица	Матрица, которая при умножении на исходную матрицу даёт единичную матрицу.
9.	Собственное значение	Число, которое определяет масштабирование, выполненное линейным
		преобразованием вдоль соответствующего собственного вектора.
10.	Ортогональность	Свойство векторов или матриц быть перпендикулярными друг другу или иметь
		нулевое скалярное произведение.

No	Вопрос	Ответ
1.	Найдите скалярное	1*(-1) + 2*4 + 3*2 = -1 + 8 + 6 = 13.
	произведение двух	
	векторов: (1, 2, 3) и (-1, 4,	
	2).	
2.	Даны матрицы $A = [[1, 2],$	A * B = [[1*5 + 2*7, 1*6 + 2*8], [3*5 + 4*7, 3*6 + 4*8]] = [[19, 22], [43, 50]].
	[3, 4]] и $B = [[5, 6], [7, 8]].$	
	Найдите произведение	
	матриц А и В.	
3.	Найдите обратную	Обратная матрица для A: $A^{(-1)} = [[-2, 1], [1.5, -0.5]].$
	матрицу для матрицы А =	
	[[1, 2], [3, 4]].	
4.	Решите систему	x + y = 5
	линейных уравнений:	2x - y = 4

5.	Найдите обратную матрицу для матрицы B = [[2, 1], [3, 4]].	$B^{(-1)} = (1/\det(B)) * \operatorname{adj}(B),$ где $\det(B) = 2*4 - 1*3 = 8 - 3 = 5,$ а $\operatorname{adj}(B) = [[4, -1], [-3, 2]].$ Таким образом, $B^{(-1)} = (1/5) * [[4, -1], [-3, 2]] = [[4/5, -1/5], [-3/5, 2/5]].$
6.	Решите систему линейных уравнений:	x + 2y - z = 3 2x + y + z = 4 x - y + 3z = 1 Other: $x = 1$, $y = 2$, $z = -1$.
7.	Найдите собственные значения и собственные векторы матрицы C = [[4, 1], [2, 3]].	Сначала вычисляем характеристическое уравнение: $\det(C - \lambda I) = 0,$ где I - единичная матрица размера $2x2$. Вычисляем $\det(C - \lambda I)$: $(4-\lambda)(3-\lambda) - 1*2 = 0,$ $\lambda^2 - 7\lambda + 10 = 0,$ $(\lambda - 5)(\lambda - 2) = 0.$ Таким образом, собственные значения $\lambda 1 = 5$ и $\lambda 2 = 2$. Для $\lambda 1 = 5$: Найдем собственные векторы: $(C - 5I)v = 0,$ $[[4, 1], [2, 3]] * [[x], [y]] = [[0], [0]].$ Ответ: $v1 = [1, -1], v2 = [1, 2].$
8.	Найдите сумму матриц A = $[[1, 2], [3, 4]]$ и B = $[[-1, 0], [2, 1]]$.	A + B = [[1 + (-1), 2 + 0], [3 + 2, 4 + 1]] = [[0, 2], [5, 5]].
9.	Найдите произведение матриц $A = [[3, 2], [1, 4]]$ и $B = [[2, -1], [0, 5]].$	A * B = [[3*2 + 2*0, 3*(-1) + 2*5], [1*2 + 4*0, 1*(-1) + 4*5]] = [[6, 7], [2, 19]].

10.	Найдите максимальное и	Сначала вычисляем характеристическое уравнение:
	минимальное	$\det(D - \lambda I) = 0,$
	собственные значения	где I - единичная матрица размера 2x2.
	матрицы $D = [[-2, 4], [3,$	Вычисляем det(D - λ I):
	1]].	$(-2-\lambda)(1-\lambda) - 4*3 = 0,$
		$\lambda^2 + \lambda - 14 = 0.$
		Решим данное квадратное уравнение и найдем максимальное и минимальное
		собственные значения.
11.	Найдите ранг матрицы Е	Поскольку вторая строка матрицы Е является линейной комбинацией первой строки,
	= [[1, 2, 3], [2, 4, 6], [-1, 0,	то ранг матрицы Е равен 1.
	1]].	
12.	Найдите базис и	Поскольку v2 является кратным вектора v1, то базисом линейной оболочки данных
	размерность линейной	векторов будет $v1 = (1, 2, 3)$ и размерность линейной оболочки равна 1.
	оболочки векторов v1 =	
	(1, 2, 3) u v2 = $(2, 4, 6)$.	

1.	Найдите скалярное произведение векторов $a = (2, 4, 1)$ и $b = (1, 3, -2)$.
A)	12
Б)	10
B)	5

2.	Вычислите определитель матрицы $A = [[3, -2], [5, 1]].$
A)	10
Б)	13
B)	14

3.	Вычислите определитель матрицы $A = [[5, 3], [-2, 4]].$
A)	18
Б)	10
B)	26

4.	Найдите скалярное произведение векторов $a = (2, 3)$ и $b = (4, -1)$.
A)	10
Б)	5
B)	8

5.	Найдите собственные значения матрицы $D = [[4, 2], [1, 3]].$
A)	Собственные значения: $\lambda 1 = 5$, $\lambda 2 = 2$.
Б)	Собственные значения: $\lambda 1 = 7$, $\lambda 2 = 1$.
B)	Собственные значения: $\lambda 1 = 10$, $\lambda 2 = 3$.

6.	Найдите обратную матрицу для матрицы $C = [[1, 2], [3, 4]].$
A)	[[-2, 3], [1.8, -0.5]]
Б)	[[-2, 1], [1.5, -0.5]]
B)	[[-4, 2], [1.0, -0.2]]

7.	Найдите ранг матрицы $B = [[1, 2, 3], [2, 4, 6], [3, 6, 9]]$	
A)	Ранг матрицы В равен 1, так как вторая и третья строки являются линейной комбинацией первой	
	строки	
Б)	Ранг матрицы В равен 5, так как вторая и третья строки являются линейной комбинацией первой строки	
B)	Ранг матрицы В равен 3, так как вторая и третья строки являются линейной комбинацией первой строки	

1	2	3	4	5
a	б	В	б	a
6	7	8	9	10
б	a			

Дисциплина «Физика»

№	Вопрос	Ответ
1.	Назовите определение понятия	Это изменение положения тела в пространстве со временем под воздействием
	«механическое движение».	внешних сил.
2.	В чем заключается физический	Закон сохранения момента импульса означает, что в замкнутой системе сумма
	смысл закона сохранения	моментов импульса остается постоянной, если на эту систему не действуют
	момента импульса?	внешние моменты сил.
3.	Назовите пределы	Пределы применимости классической механики Ньютона включают случаи
	применимости классической	экстремально больших или малых масштабов, высоких скоростей близких к
	механики Ньютона.	скорости света, и микромир с элементами квантовой механики
4.	Сформулируйте закон	Закон сохранения механической энергии утверждает, что в замкнутой системе, в
	сохранения механической	которой действуют только консервативные силы, сумма кинетической и
	энергии.	потенциальной энергий остается постоянной.
5.	Сформулируйте уравнение	Уравнение Бернулли описывает сохранение полной энергии в несжимаемой
	Бернулли	жидкости вдоль потока.

6.	Назовите определение понятия	Раздел механики, который изучает описание движения тел без рассмотрения	
	«кинематика»	причин, вызывающих это движение.	
7.	Назовите определение понятия	Это мера способности системы совершать работу. Она может принимать	
	«энергия».	различные формы, такие как кинетическая энергия, потенциальная энергия или	
		внутренняя энергия.	
8.	Какие задачи решаются в	В электростатике решаются задачи, связанные с расчетом электрических полей и	
	электростатике?	потенциалов, взаимодействием между зарядами, распределением электрических	
		зарядов и проводников.	
9.	Сформулируйте теорему	Теорема Гаусса в электродинамике утверждает, что поток электрического поля	
	Гаусса в электродинамике	через замкнутую поверхность пропорционален заряду, заключенному внутри	
		этой поверхности.	
10.	Что такое магнитное поле?	Это область пространства, в которой действует магнитная сила на заряды или	
		другие магнитные поляризуемые объекты.	
11.	Назовите гипотезу Максвелла.	Гипотеза Максвелла утверждает, что электрическое и магнитное поля	
		взаимосвязаны и могут существовать в виде электромагнитных волн,	
		распространяющихся с определенной скоростью - скоростью света.	

1.	Состояния одного и того же вещества, переходы между	которыми сопровождаются скачкообразным изменением
	ряда физических свойств, называются	состояниями
	агрегатными	

	Теплоёмкостью	
	чтобы повысить его температуру на один градус, называется	данного тела
2.	Физическая характеристика вещества, которая показывает, какое	количество энергии необходимо подвести к телу,

	
3.	Путь, который проходят молекулы газа между двумя последовательными столкновениями, называется длиной
	пробега
	Свободного
4.	Группа необратимых процессов, связанных с выравниванием неоднородностей плотности, температуры или
	скорости упорядоченного перемещения отдельных слоев вещества, называется явлениями
	Переноса
5.	Изменение температуры реального газа в результате его адиабатического расширения (адиабатического
	дросселирования) называется эффектом
	Джоуля-Томсона
6.	Геометрическое место точек, колеблющихся в одинаковой фазе, называется
	поверхностью
	Волновой
7.	Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными
	колебаниями
	Механическими
8.	Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется
	ВОЛНЫ
	Длиной

9.	Периодически действующий двигатель, совершающий работу за счет полученной извне теплоты, называется
	двигателем
	Тепловым
10.	Безразмерная величина, показывающая, во сколько раз поле ослабляется диэлектриком, называется
	диэлектрической среды
	проницаемостью
11.	Утверждение, что алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не
	обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри
	этой системы, называется законом электрического заряда
	Сохранения
12.	Элементарная частица, которая всегда (в любой среде!) движется со скоростью света и имеет массу покоя, равную
	нулю, называется
	Фотоном
13.	Квазичастица, электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае
	возбуждения с энергией, меньшей ширины запрещенной зоны называется
	Экситоном
14.	Наивысший энергетический уровень, занятый электронами, называется уровнем
	Ферми

15.	Датчик температур, состоящий из двух соединенных между собой разнородных металлических проводников,
	называется
	Термопарой

1	2	3	4	5
Агрегатными	Теплоемкостью	свободного	переноса	Джоуля-Томсона
6	7	8	9	10
волновой	Механическим	длиной	тепловым	проницаемостью
волновон	И	длипои	ТСПЛОВЫМ	пропицаемостью
11	12	13	14	15
сохранения	Фотоном	экситоном	Ферми	термопарой

Дисциплина «Математический анализ»

$N_{\underline{0}}$	Понятие	Определение
		Числовая последовательность, каждый член которой, начиная со второго,
1.	Арифметическая прогрессия	равен предыдущему, сложенному с одним и тем же числом d (d – разность
		прогрессии).
		Последовательность не равных нулю чисел, каждый член которой, начиная
2.	Геометрическая прогрессия	со второго, равен предыдущему, умноженному на одно и то же число q (q -
		знаменатель прогрессии).
		Множество точек на плоскости, у которых абсциссы являются
3.	График функции	допустимыми значениями аргумента, а ординаты – соответствующими
		значениями функции.
4.	Замкнутый интервал	Множество всех чисел x, которые удовлетворяют неравенствам $a \le x \le b$.
5.	Множество	Совокупность, набор каких-либо предметов (объектов).
		Множество, которое состоит из тех значений неизвестного члена в
6.	Множество истинности	неопределенном высказывании, при которых оно становится истинным
		высказыванием.
		Предложения, содержащие определенные утверждения, истинность или
7.	Неопределенные высказывания	ложность которых зависит от значения их неизвестного члена
		(переменной).
8.	Нечетная функция	Функция, для которой при любом $x \in D$ выполняется равенство $f(-x) = -f(x)$.
9.	Основные элементарные функции	Степенная, показательная, логарифмическая, тригонометрическая,
Ź.	Осповные элементарные функции	обратные тригонометрические функции.

10.	Открытый интервал (числовой промежуток)	Множество всех чисел x, которые удовлетворяют неравенствам a <x<b.< th=""></x<b.<>
-----	---	--

№	Вопрос	Ответ
1.	Что такое числовые	Упорядоченное множество чисел, которые следуют друг за другом в
	последовательности?	определенном порядке.
2.	Дайте определение пределу функции	Значение, к которому стремятся значения функции, когда аргумент
		(независимая переменная) стремится к определенному значению или
		бесконечности.
3.	Дайте определение понятию	Понятие из математического анализа, которое описывает скорость
	производной	изменения одной величины относительно другой.
4.	Какое применение производной Вы	Определение экстремумов функций (максимумы и минимумы), анализ
	знаете?	изменений величин и скорости (например, скорость изменения расстояния
		по времени), анализ формы графиков функций и др.
5.	Что такое «неопределенный	Это интеграл, который находит антипроизводную функции. Обратный
	интеграл»	процесс производной, интеграл позволяет найти функцию, производная
		которой равна исходной функции.
6.	Перечислите этапы решения	Установление пределов интегрирования, вычисление интеграла,
	определенного интеграла	применение правил интегрирования, вычисление разностей и
		устанавливание значений конечного результата.
7.	Определите понятие	Это математическое уравнение, которое содержит производные
	«дифференциальное уравнение»	неизвестной функции. Оно описывает зависимости между значением
		функции, ее производными и другими переменными.

1.	Даны множества: $A = \{-2, 3, 4, 7\}$ и $B = \{1, 2, 4, 9\}$. Пересечение множеств B и A является множество	
	4	

2.	Даны множества: $A = \{2, 3, 4, 8\}$ и $B = \{-1, 2, 4, 9\}$. Пересечение множеств B и A является множество:,
	2,4

3.	В группе из 20 студентов 16 сдали алгебру, 8 математику. Каждый студент сдал хотя бы один экзамен. Оба
	предмета сдали
	4

4.	. В группе из 30 туристов 20 человек говорят по-английски, 15 по-французски, 10 на обоих языках. Не одни	
языком не владеют		
	5	

5.	Взаимно однозначное соответствие между областью определения и областью значений задают функции
A)	y = x + 1
Б)	y = lnx
B)	$y = \cos x$
Γ)	$y = x^4$

6.	Множеству натуральных чисел N эквивалентны множества чисел
A)	четных
Б)	нечетных
B)	рациональных
Γ)	действительных

7.	Из 30 студентов 20 интересуется кино, а 15 – театром, каждый из студентов интересуется хотя бы одним. И
	кино и театр интересуетстудентов
	5
8.	300 руб. положили в банк под 9% годовых. Через год сумма вклада будет
	327
9.	Торговец закупил на все свои деньги на оптовой базе товар и продал его с наценкой 20%. После распродажи он
	решил повторить столь удачную операцию. Всего он получил прибыли%
	44
10.	Первый член арифметической прогрессии равен двум, десятый - десяти. Сумма первых десяти членов этой
	прогрессии равна
	60

1	2	3	4	5
4	2,4	4	5	а,б
6	7	8	9	10
а,б,в	5	327	44	60

Дисциплина «Математическая логика и теория алгоритмов»

$N_{\underline{0}}$	Понятие	Определение
1	Алгебра высказываний и	Это раздел математической логики, который занимается формальным описанием и
	алгебра предикатов.	операциями над высказываниями, которые могут быть либо истинными, либо
		ложными.
2	Алгебра предикатов.	Это расширение алгебры высказываний, которое позволяет работать с предикатами.
		Предикаты - это выражения, которые зависят от одной или нескольких переменных
		и могут быть истинными или ложными в зависимости от значений переменных.
3	Логика высказываний	Формальная система, которая изучает составные высказывания и связи между
		ними, основываясь на их логической структуре.
4	Логика первого порядка	Формальная система, которая расширяет логику высказываний и позволяет
		работать с предикатами и кванторами.
5	Математическая логика	Область математики, которая изучает формальные системы, символы и правила
		вывода для формирования доказательств и выводов в математике.
6	Метод резолюций	Метод, используемый в логике, особенно в логике высказываний, для вывода новых
		логических заключений из набора предпосылок.
7	Модальная логика	Раздел логики, который изучает модальности и рассматривает понятия не только
		истинности, но и других свойств высказываний, таких как возможность,
		необходимость и доступность.
8	Непротиворечивость	Свойство формальной системы или набора аксиом, при котором невозможно
		вывести одновременно и противоположные друг другу утверждения или
		противоречия.
9	Регулярные выражения	Формальный язык описания и поиска текстовых шаблонов в строках символов.

10	Теория множеств	Область математики, которая изучает свойства, структуру и операции над
		множествами.
11	Теория отношений	Область математики, которая изучает свойства и структуру различных типов
		отношений между объектами.

№	Вопрос	Ответ
1.	Что такое	Модель вычислительного устройства, которое может находиться в одном из
	детерминированные	конечного числа состояний и принимать решения в зависимости от входных
	конечные автоматы	символов.
	(ДКА)?	
2.	Что такое	Модель вычислительного устройства, которое может находиться в одном из
	недетерминированные	состояний и иметь несколько возможных переходов для каждого входного символа.
	конечные автоматы	
	(HKA)?	
3.	Использование машины	Машина Тьюринга является формальной моделью вычислений, которая может
	Тьюринга для	использоваться для доказательства разрешимости или неразрешимости задач.
	доказательства	1. Доказательство разрешимости задачи: Машина Тьюринга может быть
	разрешимости или	использована для конструирования алгоритма, который решает задачу.
	неразрешимости задач.	2. Доказательство неразрешимости задачи: Для доказательства неразрешимости
		задачи с помощью МТ используется метод диагонализации. Он заключается в
		конструировании МТ, которая измеряет себя и применяет на себя противоречивые
		операции.

1	Иото и попочи	Фолько и и и в тран плотичи дридостод мотомотично одина, мо по до да да да и одо да да да
4.	Использование	Формальные грамматики являются математическими моделями, используемыми
	формальных грамматик	для описания и анализа формальных языков. Они состоят из набора правил или
	для анализа	продукций, которые определяют структуру и порядок символов в языке.
	формальных языков.	
5.	Какое множество вы	Нечеткое множество - это математическая концепция, вводящая идею о
	назовете нечетким?	неопределенности и размытости в определении принадлежности элементов к
		множеству.
6.	Какая логика	Нечеткая логика - это логический подход, который позволяет моделировать и
	называется нечеткой?	работать с нечеткими или неопределенными данными и понятиями.
7.	Какая логика	Темпоральная логика - это формальный логический подход, который предоставляет
	называется	язык и инструменты для моделирования, рассуждений и спецификации важных
	темпоральной?	временных свойств и связей в системах или программных моделях.
8.	Что представляет собой	Это набор правил, определяющих структуру или синтаксис языка.
	формальная	Она состоит из множества символов и набора продукций, которые определяют, как
	грамматика?	из одних символов можно получить другие символы.
9.	Что представляет собой	Это множество строк, символов или выражений, которые могут быть
	формальный язык?	сгенерированы или приняты с помощью формальной грамматики.
10	Кратко	Основной свойство классической логики заключается в двоичности: каждое
	охарактеризуйте	утверждение имеет только два возможных значения - истина или ложь.
	классическую логику	Классическая логика опирается на правила закона исключенного третьего и закона
		противоречия.

11	Кратко	Математическая логика является ветвью логики, которая разрабатывает	
	охарактеризуйте	формальные методы и системы для представления и рассуждения о математических	
	математическую логику	структурах и объектах. Она использует символы и формальные языки для	
		определения и формализации математических понятий, аксиом и правил вывода.	

1.	Множество, если его характеристический предикат является вычислимым, называется
a	Рекурсивным
b	Рекурсивно перечислимым
c	Вычислимым
d	Эффективным

2.	Предикат – это выражение или функция, которая возвращает значение истинности (true или false) в
	зависимости от того, удовлетворяют ли аргументы заданному условию
A	алгебраическое
В	рекурсионное
С	логическое
D	Аргументированное

Функция является примитивно рекурсивной(ПРФ), если она получается из набора исходных ПРФ с помощью операторов
 Рекурсии
 Подстановки
 Ограниченной минимизации

d	Замены
4.	Теорема – «Множество тогда и только тогда разрешимо, когда оно само и его дополнение рекурсивно
	перечислимы», называется теоремой
a	Поста
b	Геделя
c	Тьюринга
d	Клини
5.	Усеченная разность чисел 5 и 8 (5÷8) равна (ответ укажите цифрой)
0	
6.	Функция e_1^1 имеет геделевский номер, равный (ответ укажите цифрой)
5	
7.	Функция S(x) имеет геделевский номер, равный (ответ укажите цифрой)
3	
8	Символы, которые машина Тьюринга читает и пишет на ленте, образуют
a	внешний алфавит
b	Команды
c	Выражения
d	внутренний алфавит

Символы, которые определяют внутреннее состояние машин Тьюринга, образуют

A	внутренний алфавит
В	Команды
С	Выражения
D	внешний алфавит

10.	Всякое повествовательное предложение, о котором имеет смысл говорить, что оно (его содержание) истинно	
	или ложно, называется	
A	Высказыванием	
В	Выражением	
С	Выводом	
D	Отношением	

1	2	3	4	5
b	С	bc	a	0
6	7	8	9	10
5	3	d	a	a

Дисциплина «Статистика»

No॒	Понятие	Определение
1.	Популяция	Общий набор всех возможных объектов (людей, вещей, событий и т. д.), которые
		нас интересуют в конкретном исследовании.
2.	Выборка	Подмножество популяции, которое используется для проведения статистического
		исследования. Выборка должна быть представительной, чтобы обеспечить
		достоверность и обобщение результатов на всю популяцию.
3.	Переменная	Характеристика или свойство, которое может изменяться в рамках популяции или
		выборки. Переменные могут быть количественными (например, возраст, доход)
		или качественными (например, пол, цвет глаз).
4.	Параметры	Численные характеристики популяции, которые мы хотим оценить или узнать.
		Например, среднее значение или стандартное отклонение.
5.	Статистика	Численные характеристики, вычисленные на основе данных в выборке, которые
		представляют оценки или приближения параметров популяции.
6.	Описательная статистика	Метод анализа данных, который сводит большой объем информации в краткую и
		понятную форму. Описательная статистика включает меры центральной
		тенденции (среднее значение, медиана) и меры изменчивости (дисперсия,
		стандартное отклонение).
7.	Инференциальная статистика	Метод анализа данных, который позволяет делать выводы и принимать
		основанные на данных решения относительно популяции на основе информации
		из выборки. Включает методы оценки параметров и проверки гипотез.
8.	Гипотеза	Утверждение или предположение о популяции, которое может быть проверено с
		помощью статистических методов. Включает нулевую и альтернативную
		гипотезы.

9.	Уровень значимости	Вероятность ошибочного отклонения нулевой гипотезы. Обычно выбирается		
		заранее и обозначается как альфа (α). Результаты исследования могут считаться		
		значимыми, если вероятность получения таких результатов случайно мала		
		(обычно на уровне $\alpha = 0.05$ или $\alpha = 0.01$).		
10.	Регрессионный анализ	Метод статистики, который используется для изучения взаимосвязи между		
		зависимой переменной и одной или несколькими независимыми переменными.		
		Позволяет прогнозировать значения зависимой переменной на основе значений		
		независимых переменных.		

No	Вопрос	Ответ
1.	Что такое медиана и как она	Медиана - это значение, которое разделяет упорядоченный набор данных на две
	вычисляется?	равные части. Чтобы найти медиану, данные сортируются по возрастанию, затем
		медиана находится в середине набора данных (если количество данных нечетное)
		или является средним значением двух центральных значений (если количество
		данных четное).
2.	Что такое среднее значение и	Среднее значение - это сумма всех значений в наборе данных, разделенная на
	как оно вычисляется?	количество значений в этом наборе данных. Формула для вычисления среднего
		значения: среднее = сумма значений / количество значений.
3.	Что такое стандартное	Стандартное отклонение - это мера разброса данных относительно среднего
	отклонение и как оно	значения. Оно показывает, насколько значения разбросаны вокруг среднего
	вычисляется?	значения. Формула для вычисления стандартного отклонения: сначала
		вычисляется разность между каждым значением и средним значением, затем эти

	T	,
		разности возводятся в квадрат, суммируются, делятся на количество значений и
		затем извлекаются корень квадратный.
4.	Что такое доверительный	Доверительный интервал - это интервал оценки, который указывает на то, с какой
	интервал и как он	вероятностью реальное значение параметра находится в определенном диапазоне.
	интерпретируется?	Например, доверительный интервал 95% означает, что с 95% уверенностью мы
		можем сказать, что реальное значение параметра находится в этом диапазоне.
5.	Что такое выборочное	Выборочное распределение - это распределение статистики или параметра,
	распределение и зачем его	полученной из множества выборок из популяции. Использование выборочного
	использовать?	распределения позволяет сделать выводы о параметрах популяции на основе
		информации, полученной из выборки. Оно используется для проверки гипотез,
		построения доверительных интервалов и принятия статистических решений.
6.	Что такое уровень	Уровень значимости - это вероятность ошибки при отклонении нулевой гипотезы,
	значимости?	принимается обычно заранее и обозначается как альфа (α).
7.	Что такое однофакторный	Однофакторный анализ дисперсии - это статистический метод сравнения средних
	анализ дисперсии (ANOVA)?	значений двух или более групп.
8.	Что такое регрессионный	Регрессионный анализ - это статистический метод, который используется для
	анализ?	изучения взаимосвязи между зависимой переменной и одной или несколькими
		независимыми переменными.
9.	Что такое нулевая гипотеза и	Нулевая гипотеза (Н0) - это гипотеза, которая подлежит проверке, а
	альтернативная гипотеза?	альтернативная гипотеза (Н1 или На) - это утверждение, которое принимается в
		случае, если нулевая гипотеза отвергается.
10.	Что такое тип I и тип II	Тип I ошибка - это отклонение нулевой гипотезы, когда она на самом деле верна.
	ошибки?	Тип II ошибка - это не отклонение нулевой гипотезы, когда она на самом деле
		неверна.
		-

11.	Что такое интервал доверия?	Интервал доверия - это диапазон значений, в котором с заданной вероятностью
		находится параметр генеральной совокупности.

1.	Что такое медиана?
A)	Самое часто встречающееся значение в наборе данных.
Б)	Среднее арифметическое всех значений в наборе данных.
B)	Значение, разделяющее упорядоченный набор данных на две равные части.

2.	Каким образом вычисляется среднее значение?
A)	Сумма всех значений в наборе данных, деленная на количество значений.
Б)	Удвоенное значение медианы.
B)	Разность между максимальным и минимальным значениями в наборе данных.

3.	Что такое дисперсия?
A)	Мера разброса данных относительно их среднего значения.
Б)	Разность между максимальным и минимальным значениями в наборе данных.
B)	Числовая характеристика центральной тенденции данных.

4.	Что такое уровень значимости?
A)	Вероятность ошибки при отклонении нулевой гипотезы.
Б)	Численное значение, которое определяет степень связи между двумя переменными.
B)	Данные, у которых выбросы искажают общую картину.

5.	Что такое выборочное распределение?
A)	Распределение, которое характеризует ошибки модели регрессии.
Б)	Распределение оценок параметра, полученных из множества выборок генеральной совокупности.
B)	Распределение, в котором все значения равномерно распределены.

6.	Что такое корреляция?
A)	Мера разброса данных относительно их среднего значения
Б)	Медиана
B)	Статистическая мера, которая показывает наличие и силу связи между двумя переменными

7.	Что такое стандартное отклонение?
A)	Самое часто встречающееся значение в наборе данных
Б)	Среднее значение
B)	Корень квадратный из дисперсии

 8. Что такое нулевая гипотеза? A) Гипотеза, которая подлежит проверке Б) Неправильное предположение В) Гипотеза, которая подлежит проверке 			_
Б) Неправильное предположение	8.	Что такое нулевая гипотеза?	
	A)	Гипотеза, которая подлежит проверке	
В) Гипотеза, которая подлежит проверке	Б)	Неправильное предположение	
- /	B)	Гипотеза, которая подлежит проверке	

9.	Что такое выбросы (аномалии)?
A)	Значения, которые значительно отличаются от остальных значений в наборе данных

Б)	Среднее значение
B)	Параметр генеральной совокупности

10.	Что такое погрешность выборки?
A)	Численная характеристика генеральной совокупности
Б)	Мера разброса данных
B)	Разница между выборочной оценкой и реальным значением параметра генеральной совокупности

1	2	3	4	5
В	a	a	a	б
6	7	8	Q	10
O	,	Ü		10

Дисциплина «Эконометрика»

№	Понятие	Определение
1.	Эконометрика	дисциплина, которая комбинирует теорию экономики, статистические методы и
		математические модели для анализа экономических явлений и принятия
		экономических решений.

2.	Регрессионный анализ	Регрессионный анализ используется для описания и анализа взаимосвязи между зависимыми (экономическими) переменными и одной или несколькими независимыми переменными. Он помогает определить, как изменение одной переменной влияет на другую переменную.
3.	Эконометрическая модель	Эконометрическая модель является математическим или статистическим описанием экономической системы или явления. Модель может быть линейной или нелинейной, статической или динамической.
4.	Линейная регрессия	эконометрический метод, используемый для описания и прогнозирования зависимости между зависимыми и независимыми переменными. Математически, это представление в виде линейной функции.
5.	Метод наименьших квадратов	Метод наименьших квадратов (МНК) - это статистический метод, применяемый в линейной регрессии для оценки параметров модели. Он минимизирует сумму квадратов разностей между фактическими значениями зависимой переменной и прогнозируемыми значениями.
6.	Мультиколлинеарность	Мультиколлинеарность возникает, когда две или более независимые переменные в модели сильно коррелируют друг с другом. Это может привести к проблемам в оценке и интерпретации параметров модели.
7.	Автокорреляция	Автокорреляция проявляется, когда ошибки регрессионной модели коррелируют между собой. Это может быть проблемой при проведении статистических тестов и делает оценку параметров модели менее эффективной.
8.	Гетероскедастичность	Гетероскедастичность - это явление, когда дисперсия ошибок модели не является постоянной для всех значений независимых переменных. Это может приводить к искажению стандартных ошибок оценок параметров.

9.	Интерпретация	В эконометрике важно уметь интерпретировать коэффициенты регрессии.
	коэффициентов	Коэффициенты могут указывать направление и силу взаимосвязи между
		переменными.
10.	Эндогенность	Эндогенность возникает, когда одна из независимых переменных коррелирует с
		ошибками модели. Это может приводить к смещению оценок параметров.
11.	Проверка гипотез	В эконометрике часто проводятся статистические тесты для проверки гипотез о
		значимости исследуемых параметров модели. Примеры таких тестов включают t-
		тесты, F-тесты и тесты на гетероскедастичность.

No	Вопрос	Ответ
1.	Какие факторы необходимо	1. Теоретическое обоснование: Важно иметь теоретическое обоснование
	учитывать при выборе	выбора функциональной формы, основываясь на экономической теории и
	подходящей функциональной	предположениях о взаимосвязях между переменными.
	формы в эконометрических	2. Эмпирические наблюдения: Анализ эмпирических данных может помочь в
	моделях?	выборе подходящей функциональной формы.
		3. Гибкость модели: Стоит учитывать гибкость выбранной функциональной
		формы для адаптации к изменениям в данных или модельных
		предположениях.
		4. Экономическая интерпретация: Выбор функциональной формы также
		может зависеть от того, каким образом переменные могут быть экономически
		интерпретированы.
		5. Автокорреляция и гетероскедастичность: При наличии автокорреляции или
		гетероскедастичности может потребоваться выбор другой функциональной

		1
		формы для учета этих особенностей данных и получения состоятельных
		оценок модели.
		6. Полезность и простота интерпретации: Функциональная форма должна быть
		полезной для моделирования и иметь простое экономическое и статистическое
		объяснение.
2.	В чем состоит разница между	Разница между перекрестными разрезами и временными рядами в анализе
	перекрестными разрезами и	панельных данных заключается в том, какие переменные варьируются внутри
	временными рядами в анализе	каждого типа данных. Понимание этой разницы помогает решить, какие
	панельных данных?	статистические методы и модели использовать для анализа панельных данных
		и получения полной информации о взаимосвязях между переменными.
3.	Какие методы можно	Мультиколлинеарность возникает, когда в регрессионной модели существует
	применить для	сильная корреляция между независимыми переменными. Это может привести
	контролирования	к нестабильным и недостоверным оценкам коэффициентов регрессии.
	мультиколлинеарности в	Методы, которые можно применить для контроля мультиколлинеарности в
	регрессионной модели?	регрессионной модели:
		1. Метод добавления и исключения переменных.
		2. Проверка вариационного инфляционного фактора (VIF).
		3. Анализ корреляционной матрицы.
		4. Матрица собственных значений (Eigenvalues).
		5. Регуляризация.
		6. PCA (Principal Component Analysis).
4.	Объясните, как использование	Проблема эндогенности возникает, когда в модели существует взаимосвязь
	инструментальных переменных	между объясняемой переменной и регрессорами, таким образом, что остатки
	помогает решить проблему	модели становятся зависимыми от ошибок в измерении или спецификации
	эндогенности в эконометрике.	

		данных. Использование инструментальных переменных (ИВ) помогает решить
		эту проблему.
		Инструментальные переменные - это переменные, которые используются в
		регрессии вместо эндогенных переменных, чтобы контролировать или
		корректировать их влияние на модель.
5.	Какие предпосылки должны	При использовании модели множественной регрессии в эконометрике следует
	быть выполнены при	учитывать несколько предпосылок, чтобы получить состоятельные и
	использовании модели	эффективные оценки коэффициентов регрессии.
	множественной регрессии в	1. Линейность: Основной предпосылкой модели множественной регрессии
	эконометрическом анализе?	является линейная связь между зависимой переменной и независимыми
		переменными.
		2. Независимость ошибок: Ошибки должны быть независимыми и одинаково
		распределенными (нормально распределенными с нулевым средним и
		постоянной дисперсией).
		3. Отсутствие мультиколлинеарности: Между независимыми переменными не
		должно существовать сильной корреляции (мультиколлинеарность).
		4. Экзогенность независимых переменных: Независимые переменные должны
		быть экзогенными, то есть не должны быть коррелированы с ошибками
		модели.
		5. Отсутствие гетероскедастичности: Ошибки должны быть
		гомоскедастичными, что означает, что дисперсия ошибок должна оставаться
		постоянной по всем значениям независимых переменных.
		6. Отсутствие автокорреляции: Ошибки не должны быть
		автокоррелированными. Автокорреляция указывает на наличие

		систематических паттернов в ошибках, которые могут привести к
		неэффективным оценкам коэффициентов и неправильным выводам.
		7. Нормальность остатков: Остатки должны быть нормально
		распределенными. Если остатки не являются нормально распределенными, это
		может привести к недостоверным статистическим выводам, основанным на
		предположении о нормальности.
6.	Расскажите о методах проверки	Проверка гетероскедастичности (или наличия гетероскедастичности) в
	гетероскедастичности в	эконометрике включает различные методы для выявления систематических
	эконометрике и методах борьбы	изменений дисперсии ошибок. Вот некоторые из наиболее распространенных
	с ней.	методов проверки гетероскедастичности:
		1. Графический анализ.
		2. Тест Бройша-Пагана и тест Уайта.
		3. Тесты Гольдфельда-Квандта и тесты Глейзера-Бокса.
		4. Тест Уайта на спецификацию гетероскедастичности.
		После выявления гетероскедастичности, можно применить различные методы для борьбы с ней:
		1. Использование взвешенного метода наименьших квадратов.
		2. Коррекция Бройша-Пагана/Уайта.
		3. Робастные стандартные ошибки.
		4. Применение методов гетероскедастичности-поправленной оценки.
7.	Объясните, что такое уровень	Уровень значимости - это пороговое значение, которое используется для
	значимости и как он связан с	принятия или отвержения статистических гипотез в эконометрике.
	принятием гипотез в	
	эконометрике.	

		В эконометрике формулируется нулевая гипотеза (Н0) и альтернативная
		гипотеза (Н1) относительно взаимосвязи между переменными в модели.
		Уровень значимости представляет собой вероятность ошибки первого рода, то
		есть вероятность отвергнуть нулевую гипотезу, когда она фактически верна.
9.	Расскажите о различных	В эконометрике для оценки моделей панельных данных, которые содержат
	методах оценки моделей	информацию о наблюдениях по нескольким единицам (например, фирмам,
	панельных данных в	странам или индивидам) в разные моменты времени, используются различные
	эконометрике, их	методы, такие как:
	преимуществах и ограничениях.	1. Метод Фиксированных эффектов.
		2. Метод Случайных эффектов.
		3. Метод инструментальных переменных.

1.	Статистической зависимостью называется
A)	точная формула, связывающая переменные
Б)	связь переменных без учета воздействия случайных факторов
B)	связь переменных, на которую накладывается воздействие случайных факторов
Γ)	любая связь переменных

2.	Универсальным способом задания случайной величины Х является задание ее распределения
A)	функции
Б)	ряда
B)	плотности

Γ)	полигона
3.	Дискретной называется случайная величина,
A)	множество значений которой заполняет числовой промежуток
Б)	которая задается плотностью распределения
B)	которая задается полигоном распределения
Γ)	которая принимает отдельные, изолированные друг от друга значения
4.	Выборочная средняя является
A)	несмещенной оценкой генеральной дисперсии
Б)	несмещенной оценкой генеральной средней
B)	смещенной оценкой генеральной средней
Γ)	смещенной оценкой генеральной дисперсии
5.	Выборочная дисперсия является
A)	смещенной оценкой генеральной дисперсии
Б)	несмещенной оценкой генеральной дисперсии
B)	несмещенной оценкой генеральной средней
Γ)	смещенной оценкой генеральной средней
6.	В модели парной линейной регрессии величина У является
A)	неслучайной
Б)	постоянной

B)	случайной
Γ)	положительной
7.	Предположение о нормальности распределения случайного члена необходимо для
A)	расчета коэффициента детерминации
Б)	проверки значимости коэффициента детерминации
B)	проверки значимости параметров регрессии и для их интервального оценивания
Γ)	расчета параметров регрессии
8.	Эконометрика – наука, изучающая
A)	проверку гипотез о свойствах экономических показателей
Б)	эмпирический вывод экономических законов
B)	построение экономических моделей
Γ)	закономерности и взаимозависимости в экономике методами математической статистики
9.	M(X) и $D(X)$ – это
A)	линейные функции

10.	Для разных выборок, взятых из одной и той же генеральной совокупности, выборочные средние
A)	и дисперсии будут одинаковы

числовые характеристики генеральной совокупности (числа)

Б) В)

Γ)

функции

нелинейные функции

Б)	будут одинаковы, а дисперсии будут различны
B)	будут различны, а дисперсии будут одинаковы
Γ)	и дисперсии будут различны

Ключ к тестовым заданиям

1	2	3	4	5
В	a	Γ	В	б
6	7	8	9	10
a	В	Γ	б	Γ

Дисциплина «Математическое моделирование экономических систем»

Разъясните основные понятия:

№	Понятие	Определение
1.	Математическое	Это процесс создания формальных моделей, основанных на математических
	моделирование	уравнениях и статистических методах, для изучения поведения и функционирования
	экономических систем	экономических систем.
2.	Математическая модель	Абстрактное представление экономической системы с использованием
		математических уравнений, формул и графиков, которые позволяют анализировать и
		прогнозировать экономические явления.

3.	Экономическая система	Сложная совокупность взаимосвязанных процессов и отношений, определяющих
<i>J</i> .	Skollowii leekan ehelema	производство, распределение и потребление товаров и услуг в обществе.
4.	Параметры модели	Числовые переменные, которые используются для определения характеристик экономической системы, таких как цены, спрос, предложение, производственные мощности и т. д.
5.	Уравнения модели	Математические выражения, которые описывают связи и взаимодействия между параметрами и переменными модели. Уравнения могут быть алгебраическими, дифференциальными или статистическими.
6.	Переменные модели	Характеристики экономической системы, которые меняются в соответствии с изменением параметров и влияют на поведение системы. Примеры переменных могут включать объем производства, цены, инфляцию, безработицу и т. д.
7.	Ограничения модели	Условия, которые определяют допустимые значения переменных и параметров модели. Ограничения могут быть связаны с ресурсами, техническими возможностями, институциональными факторами и другими факторами.
8.	Анализ модели	Процесс исследования и интерпретации результатов моделирования для понимания поведения и свойств экономической системы. Анализ может включать исследование статических и динамических свойств модели, проведение сравнительных анализов и оценку эффективности экономических политик.
9.	Прогнозирование	Использование модели для предсказания будущих состояний и изменений в экономической системе. Прогнозы могут быть основаны на исторических данных, текущих трендах и сценариях изменений в параметрах модели.
10.	Чувствительность и робастность модели	Способность модели реагировать на изменение параметров и начальных условий. Чувствительность означает, что даже небольшие изменения могут оказывать значительное влияние на результаты модели, а робастность означает, что модель сохраняет свою способность предсказывать правильные результаты при изменении условий.
11.	Валидация модели	Процесс проверки и подтверждения соответствия модели реальной экономической системе и ее способности предсказывать реальные явления. Валидация может

включать	сравнение	результатов	моделирования	c	наблюдаемыми	данными,
проведени	е экспериме	нтов и внесен	ие корректировок	В	модель.	

Вопросы открытого типа:

$N_{\underline{0}}$	Вопрос	Ответ
1.	Какие основные элементы	Математическая модель экономической системы включает параметры модели
	входят в математическую	(числовые переменные, определяющие характеристики системы), уравнения модели
	модель экономической	(математические выражения, описывающие взаимодействие параметров) и
	системы?	переменные модели (характеристики системы, изменяющиеся в соответствии с
		параметрами).
2.	Какие методы	Для анализа математических моделей экономических систем используются методы
	используются для анализа	анализа дифференциальных уравнений, статистического анализа данных,
	математических моделей	оптимизации и численного моделирования.
	экономических систем?	
3.	Какие преимущества	Математическое моделирование экономических систем позволяет анализировать
	предоставляет	сложные взаимосвязи и зависимости между переменными, проводить экономические
	математическое	прогнозы, тестировать различные сценарии и оценивать эффективность
	моделирование	экономических политик.
	экономических систем?	
4.	Какие ограничения могут	Ограничения математического моделирования экономических систем могут
	быть связаны с	включать упрощение и идеализацию реальности, необходимость предположений и
	математическим	аппроксимаций, а также ограничения в доступности и точности данных.
	моделированием	
	экономических систем?	
5.	Как проверяется точность	Точность математической модели экономической системы проверяется сравнением
	математической модели	результатов моделирования с фактическими данными и проведением различных
	экономической системы?	экспериментов для проверки модели в различных условиях.

	1	
6.	Какие применения имеет	Математическое моделирование экономических систем имеет широкий спектр
	математическое	применений, включающих прогнозирование экономических тенденций, анализ
	моделирование	эффективности экономической политики, оптимизацию ресурсов и принятие
	экономических систем?	решений на основе данных.
7.	Какие вызовы могут	Разработка математических моделей экономических систем может столкнуться с
	возникнуть при	вызовами, связанными с недоступностью и недостоверностью данных, сложностью
	разработке	моделирования человеческого поведения и адаптацией моделей к изменяющимся
	математических моделей	условиям.
	экономических систем?	
8.	Какие виды	Для изучения экономических систем могут использоваться различные виды
	математических моделей	математических моделей, включающие линейные и нелинейные модели, дискретные
	можно использовать для	и непрерывные модели, эконометрические модели и другие.
	изучения экономических	
	систем?	
9.	В чем отличие между	Статические модели экономических систем описывают состояние системы в
	статическими и	определенный момент времени, в то время как динамические модели учитывают
	динамическими моделями	изменение состояния системы со временем и описывают ее эволюцию во времени.
	экономических систем?	

Тестовые задания:

1.	В межотраслевых моделях коэффициенты прямых затрат считаются:
	постоянными

2.	Бюджетное множество, заданное системой неравенств 20х1+15х2 300, х1х2. Как распределятся денежные
	средства если он приобретет товары в количествах х1=5, х2=10
	у потребителя останется 50 руб.

3.	В конфликтной ситуации результаты любого действия каждой из сторон	партнера.
	зависят от действий	
4	p	
4.	Бюджетным множеством называется множество	
<u>A)</u>	товаров	
Б)	потребителей	
B)	контрагентов	
5.	В балансовом соотношении использование любого ресурса в системе не больше чем	его
	запасов, производства и поставок извне.	
A)	равенство	
Б)	сумма	
B)	разница	
	· •	
	To	
6.	В играх, состоящих из одних случайных ходов, стратегии:	
<u>A)</u>	отсутствуют	
Б)	присутствуют	
7.	В конфликтной ситуации две стороны преследуют цели.	
A)	одинаковые	
Б)	различные	
8.	В линейной диаграмме фиктивная работа изображается:	
A)	точкой	
Б)	минусом	

- В) плюсом
- 9. В межотраслевой модели каждая отрасль описывается функцией затрат, в которой учитывается: потребление промежуточного продукта
- 10. В межотраслевом балансе по i-ой строке располагаются уровни потребления отраслями продукции: i-ой отрасли

Ключ к тестовым заданиям

1	2	3	4	5
постоянными	у потребителя останется 50 руб.	Завит от действий	a	б
6	7	8	9	10
a	б	a	потребление промежуточного продукта	і-ой отрасли

Дисциплина «Исследование операций»

Разъясните основные понятия:

№	Понятие	Определение
1.	Модель	Упрощенное представление реальной системы или проблемы.
2.	Линейное программирование	Метод решения оптимизационной задачи, когда все ограничения и целевая
		функция являются линейными функциями.
3.	Симуляция	Метод моделирования системы или процесса, чтобы сделать прогнозы о ее
		поведении в различных условиях.
4.	Сетевой анализ	Метод анализа проектных или операционных сетей, которые состоят из узлов и
		связей между ними.
5.	Методы принятия решений	Набор техник и процедур, которые помогают принимать оптимальные решения
		в условиях неопределенности и ограничений.
6.	Целочисленное	Метод решения оптимизационных задач, в которых переменные могут
	программирование	принимать только целочисленные значения.
7.	Оптимизация под ограничениями	Метод решения оптимизационных задач, в которых заданы как целевая
		функция, так и ограничения на значения переменных.
8.	Марковские процессы	Математическая модель для анализа случайных процессов, в которых будущее
		состояние системы зависит только от ее текущего состояния и вероятностей
		перехода между состояниями.
9.	Динамическое	Метод решения оптимизационных задач, в которых текущее решение зависит от
	программирование	предыдущих решений.
10.	Очереди и теория массового	Области исследования операций, которые моделируют и анализируют процессы
	обслуживания	обслуживания клиентов или задач в очереди.

Вопросы открытого типа:

No	Вопрос	Ответ
1.	Описание алгоритма симплекс-	Алгоритм решения задачи линейного программирования, который состоит из
	метода и табличная организация	повторяющихся итераций. Основные шаги:
	вычислительного процесса.	1. Начальный базисный план
		2. Оценка оптимальности
		3. Выбор разрешающей переменной
		4. Пересчет базисного плана
		5. Проверка оптимальности
2.	Понятие двойственной задачи в	Это связанная с основной задачей формулировка задачи линейного
	линейном программировании.	программирования, которая связывает ограничения и целевые функции
		основной задачи.
3.	Алгоритм двойственного	Это алгоритм решения двойственной задачи линейного программирования.
	симплекс-метода.	Основные шаги:
		1. Начальное решение
		2. Проверка оптимальности
		3. Выбор разрешающей переменной
		4. Пересчет переменных
		5. Проверка оптимальности
4.	Транспортная задача в	Задача может быть решена с помощью различных методов, включая северо-
	матричной постановке	западный угол, метод минимального элемента и метод потенциалов.
5.	Метод потенциалов для решения	Это метод решения транспортной задачи в матричной постановке,
	транспортной задачи в	использующий понятие потенциалов (цен).
	матричной постановке.	
6.	Предмет теории игр.	Научная дисциплина, изучающая различные стратегии и результаты принятия
		решений в условиях соперничества и взаимодействия между игроками.

7.	Матричные игры.	Вид игры, где игроки имеют конечный набор стратегий, и результаты игры	
		представлены матрицей выплат.	
8.	Что такое Теория игр	Раздел исследования операций, который изучает принятие решений в условиях	
		соперничества и взаимодействия различных сторон.	
9.	Смешанные стратегии в	Вероятностное распределение выбора чистых стратегий игрока.	
	матричных играх.		

Тестовые задания:

1.	Решение задач путем полного перебора вариантов, как правило, неприемлем из-за
A)	отсутствия исходных данных
Б)	чрезмерных затрат вычислительных ресурсов
B)	больших погрешностей вычислений
Γ)	невозможности достичь требуемой точности решения

2.	Динамическое программирование часто помогает решить задачи, где	
A)	необходимо найти оптимальный вариант плана производства	
Б)	переборный алгоритм потребовал бы очень много времени	
B)	переборный алгоритм требует высокую точность вычислений	
Γ)	необходимо составить оптимальный прогноз плана производства	

3. Динамическое программирование использует идею оптимизации		
Пош	Пошаговой	

4.	В идее пошаговой оптимизации есть принципиальная тонкость:
----	--

A)	WONETH YE WOD OF THE WORLD COME TO COME	
A)	каждый шаг оптимизируется сам по себе	
Б)	каждый шаг оптимизируется не сам по себе, а с "оглядкой на будущее", на последствия принимаемого	
	"шагового" решения	
B)	каждый шаг оптимизируется сам по себе, без "оглядки на будущее", на последствия принимаемого "шагового"	
	решения	
Γ)	каждый шаг оптимизируется с учетом принятого предыдущего решения	
5.	Подавляющее большинство операций, подлежащих количественному исследованию, в современном обществе	
	выполняется с применением тех или других	
A)	математических алгоритмов	
Б)	технических устройств	
B)	компьютерных технологий	
Γ)	моделирующих систем	
6.	Оценка эффективности управления операций с применением технических устройств и выработка рациональных	
	решений по их организации требуют учета	
A)	устойчивости применяемых технических устройств	
Б)	надежности применяемых технических устройств	
B)	количества применяемых технических устройств	
Γ)	качества применяемых технических устройств	
7.	Задача первостепенной важности - обеспечение работы всех элементов оборудования технических	
	устройств	
Над	ежной	

Ключ к тестовым заданиям

1	2	3	4	5
б	a	пошаговый	б	а,в.г
6	7	8	9	10
а,б,в,г	надежной			

Дисциплина «Электротехника, электроника и схемотехника»

Разъясните основные понятия:

No	Понятие	Определение	
1.	Электрическое	Мера разности потенциалов между двумя точками, которая вызывает электрический ток	
	напряжение	через проводник	
2.	Электрический ток	Поток зарядов (электронов) в проводнике в определенном направлении	
3.	Сопротивление	Мера сопротивления материала электрическому току, препятствующего свободному	
		движению электронов	
4.	Закон Ома	Закон, который установлен Георгом Омом и гласит, что сила тока через проводник прямо	
		пропорциональна напряжению между его концами и обратно пропорциональна его	
		сопротивлению.	
5.	Параллельное	Соединение элементов в электрической цепи таким образом, что у них общие точки	
	соединение	подключения.	
6.	Последовательное	Соединение элементов в электрической цепи таким образом, что ток проходит	
	соединение	последовательно через каждый элемент.	
7.	Конденсатор	Электрический элемент, который способен накапливать и хранить заряд. Он состоит из	
		двух проводников (электродов) и изоляции между ними.	

8.	Транзистор	Электронный компонент, который используется для управления током и напряжением в	
		электронных схемах. Он имеет три вывода: база, эмиттер и коллектор.	
9.	Интегральная схема	Электронный компонент, в котором множество электрических элементов, таких как	
		транзисторы, резисторы и конденсаторы, интегрированы на одном кристалле.	
10.	Логические вентили	Основные функциональные блоки в цифровых схемах, выполняющие логические	
		операции, такие как И, ИЛИ, НЕ.	

Вопросы открытого типа:

No	Вопрос	Ответ
1.	Поясните понятие	Физическая характеристика электрического элемента, которая определяет его способность
	«индуктивность».	создавать электромагнитное поле при прохождении электрического тока.
2.	Что включают	Параметры переменного тока включают:
	параметры переменного	1. Амплитуда (максимальное значение) тока.
	тока.	2. Частота (в Герцах).
		3. Период (в секундах).
		4. Фаза.
3.	Поясните термин	Однофазные системы переменного тока используют только одну фазу для передачи
	«однофазные системы	электрической энергии. Это наиболее простая система, которая используется однофазный
	переменного тока»	переменный ток в таких приложениях, таких как освещение, бытовые приборы и
		электроинструменты.
4.	Назначение проводов в	В однофазных трехпроводных сетях используются три провода: фазный, нулевой и
	однофазных	защитный, заземляющий.
	трехпроводных сетях	

5.	Поясните, что собой	Это однофазная цепь переменного тока, в которой присутствуют как активное
	представляет цепь с	сопротивление, так и индуктивность. Такая цепь может быть создана соединением
	активным и	активного сопротивления с индуктивным элементом.
	индуктивным	
	сопротивлением?	
6.	Поясните, что собой	Цепь с активным и емкостным сопротивлением - это однофазная цепь переменного тока, в
	представляет цепь с	которой присутствуют как активное сопротивление, так и емкостное сопротивление.
	активным и емкостным	
	сопротивлением?	
7.	Что такое	Разветвленная цепь переменного тока - это электрическая цепь, в которой ток разделяется
	разветвленные цепи	и протекает через несколько ветвей или параллельно соединенных элементов. В такой
	переменного тока?	цепи ток распределяется между разными ветвями в соответствии с их сопротивлением.
8.	Дайте определение	Показатель, который определяет отношение активной (полезной) мощности к полной
	коэффициента	мощности в электрической цепи.
	мощности	
	электрических систем.	
9.	Поясните принцип	Принцип действия трансформатора основан на электромагнитной индукции. Под
	действия	действием переменного напряжения в первичной обмотке происходит формирование
	трансформатора	переменного магнитного поля в магнитном сердечнике, которое индуцирует переменное
		напряжение во вторичной обмотке.
10.	Поясните принцип	Принцип действия машин постоянного тока основан на взаимодействии магнитного поля и
	действия машин	тока. Когда ток пропускается через обмотки статора, создается стационарное магнитное
	постоянного тока.	поле.

11. Поясните принцип		Это тип генераторов, которые преобразуют механическую энергию в электрическую и	
действия генератора		обеспечивают постоянный ток.	
	постоянного тока.		

Тестовые задания:

1.	Базой называется:		
a	контакт металл – полупроводник		
b	область, в которую инжектируются носители заряда		
С	электронно-дырочный переход		
d	область, из которой инжектируются носители заряда		

2.	Пробоем р-п перехода называют резкое:		
a	падение обратного тока даже при незначительном увеличении обратного напряжения сверх определенного		
	значения		
b	падение прямого тока даже при незначительном увеличении обратного напряжения сверх определенного значения		
c	возрастание прямого тока даже при незначительном увеличении обратного напряжения сверх определенного		
	значения		
d	возрастание обратного тока даже при незначительном увеличении обратного напряжения сверх определенного		
	значения		

3.	Точечные диоды используют на:		
A	высоких и сверхвысоких частотах		
b	низких частотах		
c	низких и средних частотах		
d	средних и высоких частотах		

4.	В выпрямительных диодах используется свойство:		
a	возможность работы на низких частотах		
b	большой барьерной емкости р-п перехода		
c	односторонней проводимости р-п перехода		
d	небольшого времени перезарядки емкости		

5.	Стабилитрон – полупроводниковый диод:		
a	работающий в режиме электрического пробоя		
b	с одним электрическим переходом и двумя омическими контактами с двумя выводами		
c	обладающий усилительными свойствами		
d	сконструированный на основе вырожденного полупроводника		

6.	Принцип работы стабилитрона основан на том, что на р-п переходе в области электрического пробоя при:		
a	прямом токе напряжение изменяется незначительно при значительном изменении этого тока		
b	прямом напряжении напряжение изменяется незначительно при малом изменении тока		
c	обратном токе напряжение изменяется незначительно при значительном изменении тока		
d	обратном напряжении напряжение изменяется незначительно при значительном изменении тока		

7.	Варикап можно рассматривать как:		
A	электрически управляемую катушку индуктивности		
В	конденсатор с электрически управляемой емкостью		
С	активный четырехполюсник		
D	интегральную микросхему		

8.	Биполярным транзистором называют полупроводниковый прибор:		
A	с двумя взаимодействующими электрическими переходами и тремя (или более) выводами		
В	барьерная емкость р-п перехода которых изменяется при изменении обратного напряжения		
С	сконструированный на основе вырожденного полупроводника		
D	с электрическим переходом и двумя (или более) выводами		

9.	Нормальным режимом работы транзистора называют режим, когда:		
A	в прямом направлении включен эмиттерный переход, а коллекторный – в обратном		
В	один переход смещен в прямом направлении, а другой – в обратном		
С	коллектор выполняет роль эмиттера, а эмиттер – роль коллектора		
d	оба р-п-перехода смещены в обратном направлении		

10.	В схеме с ОЭ:		
a	нет усиления по мощности		
b	усиление по току и по напряжению		
c	нет усиления по току		
D	усиление по току и по мощности		

Ключ к тестовым заданиям

1	2	3	4	5
d	a	a	c	a
6	7	8	9	10
d	b	a	b	b

Дисциплины «Дискретная математика, вычислительная математика, теория вероятностей и математическая статистика»

- 1. Рассчитайте вероятность p(A) события A, если известно, что для событий A, H_1 , H_2 в случайном эксперименте известно: $H_1 \cdot H_2 = \emptyset$; $p(H_1) = 0.5$; $p(H_2) = 0.2$; $p(A \mid H_1) = 0.3$; $p(A \mid H_2) = 0.4$; Рассчитайте вероятность p(A) события A.
- 2.Найдите MY и DY, если известно, что независимые случайные величины X_1 и X_2 распределены нормально. $MX_1=2$, $DX_1=4$; $MX_2=-3$, $DX_2=9$, $Y=2X_1+3X_2-1$
- 3. При 120 подбрасываниях игральной кости единица выпала 25 раз, двойка 19 раз, тройка 15 раз, четвёрка 22 раза, пятёрка 15 раз, шестёрка
- 21 раз. Согласуется ли это с гипотезой, что игральная кость правильной формы. Проверить гипотезу с помощью критерия согласия Пирсона при уровне значимости $\alpha = 0.05$.
- 4. Модели законов распределения вероятностей и их краткая характеристика.
- 5. Теория информации, как одна из новых областей применений теории вероятностей.
- 6.Сформулируйте и обоснуйте важность математической статистики для описания информационных данных.
- 7. Основные статистические методы обработки информации.
- 8. Задачи математической статистики, решаемые с применением компьютеров.
- 9. Приведите примеры использование программных средств для решения практических задач.
- 10. Приведите примеры применения теории вероятностей и математической статистики в науке и в практической деятельности.
- 11. Докажите, что практика приводит к необходимости вводить математические понятия и изучать их.
- 12. Какие условия предполагаются при определении вероятности?
- 13. Что рассматривают в теории вероятности наряду со случайными процессами и случайными величинами?
- 14. В чем особенность функции распределения случайной величины?
- 15. Как по функции распределения определить вероятность неравенства $P\{a=<\xi< b\}$?
- 16. Какие числовые характеристики случайных дисциплин вам известны?
- 17. Укажите физический смысл дисперсии случайной величины.
- 18. Как оценивается мат. ожидание на практике?
- 19. Определите моменты случайной величины.
- 20. Укажите физический смысл мат. ожидания случайной величины.
- 21. Множества. Операции над множествами. Счетные и несчетные множества.
- 22. Дайте определение понятию функции.
- 23. Числовые последовательности.

- 24. Дайте определение пределу функции и перечислите способы его нахождения.
- 25. Вычислите площадь области, ограниченной кривыми y = x2 и y = x3.
- 26. Найдите частное решение неоднородного дифференциального уравнения с постоянными коэффициентами $\frac{dt^2}{dt^2} 4\frac{dt}{dt} = 4$ удовлетворяющее начальным условиям: x(0) = 3, x'(0) = 3.
- $f(x) = \frac{4 x^2}{|x 2|}$ 27.Исследуйте на непрерывность и выясните характер точек разрыва функции
- 28. Найдите общее решение дифференциального уравнения $3e^{-x}t^2dt - (1+t^3)dx = 0$
- 29. Сформулируйте методику использования программного средства МАТLAB для вычисления пределов функций.
- 30.Перечислите возможности использования программного средства МАТLAB для построения поверхностей второго порядка и их проекций на плоскость.
- 31.Определите понятие множества.
- 33.Свойства множеств.
- 34. Что изучает логика высказываний.
- 35. Логика первого порядка.
- 36. Сущность числовой последовательности.
- 37. Дайте определение понятию «предел функции».
- 38. Определите понятие «замечательный предел».
- 39. Какая функция является непрерывной?
- 40. Множества и соответствия.
- 41. Дайте определение ориентированным и неориентированным графам.
- 42. Помехоустойчивое кодирование.
- 43. Дайте определения циклическим и ациклическим графам.
- 44. Дайте определение позиционной системы счисления. Каким образом осуществляется перевод натуральных чисел из десятичной системы в двоичную и из двоичной в десятичную?

- 45. .Применяя методы математического моделирования, по таблице переходов конечного автомата постройте его граф переходов. Для заданной последовательности входных значений определите последовательность внутренних состояний и выходных значений автомата.
- 46. Используя основные законы математического моделирования, для функции, заданной формулой $f(X, Y, Z) = (X \vee \overline{Z}) (\overline{Y} Z \vee X \overline{Z})$ постройте схему из функциональных элементов (в качестве элементов используйте конъюнкторы, дизъюнкторы и инверторы).
- 47. Сущность понятия «Дискретная информатика».
- 48. Что изучает теория множеств?
- 49. Теория нечетких множеств.

Тестовые задания

Вероят	ность события может быть равна
+	любому числу из отрезка [0,1]
	любому положительному числу
	любому числу отрезка [-1,1]
	любому числу

Вероятность невозможного события равна		
+	0	
	0,5	
	любому числу меньше нуля	
	0,1	

Апосте	Апостериорные вероятности $P(H_i A)$ – это вероятности	
+	гипотез после реализаций события	
	полной группы событий до реализации опыта	
	гипотез	
	группы событий	

Случайной величиной называется переменная величина,		
+	значения которой зависят от случая и определена функция распределения	
	которая определяется совокупностью возможных значений	
	заданная функцией распределения	
	которая является числовой характеристикой возможных исходов опыта	

Ряд распределения дискретной случайной величины X – это		
+	совокупность всех возможных значений случайной величины и их вероятностей	
	совокупность возможных значений случайной величины	
	геометрическая интерпретация дискретной случайной величины	
	сумма вероятностей возможных значений случайной величины	

Функция распределения случайной величины		
+	не убывает	
	не возрастает	
	постоянна	
	убывает	

Функция распределения дискретной случайной величины		
+	разрывная, ступенчатая	
	непрерывная	
	ломаная линия	
	монотонна	

Функці	Функция распределения непрерывной случайной величины	
+	непрерывна	
	кусочно-непрерывна	
	ступенчатая	
	скачкообразная	

1			

Плотность распределения непрерывной случайной величины является		
+	неотрицательной	
	неположительной	
	знакопеременной	
	ограниченной единицей	

Дискро	Дискретный случайный вектор – это		
+	случайный вектор, компоненты которого дискретные случайные величины		
	набор случайных чисел		
	случайный вектор с дискретной первой компонентой		
	случайный вектор с хотя бы одной дискретной компонентой		

Непрерывный случайный вектор – это		
+	случайный вектор, компоненты которого – непрерывные случайные величины	
	набор случайных чисел	
	случайный вектор с непрерывной одной компонентой	
	случайный вектор с хотя бы одной непрерывной компонентой	

Значение функции распределения двумерной случайной величины при равенстве	
аргументов +∞ есть	
+	1
	0
	1/2
	$+\infty$

Сумма вероятностей p_{ij} , составляющих закон распределения двумерного дискретного случайного вектора, равна

+	1
	0
	∞
	0,5

Если случайные величины независимы, то ковариация равна	
+	0
	1
	∞
	-1

Если случайные величины X и Y связаны линейной зависимостью $Y = aX + b$ (где $a < 0$,	
b – любое), то коэффициент корреляции равен	
+	-1
	+1
	0
	b

Некоррелированные случайные величины быть зависимыми	
+	могут
	не могут
	могут при линейной связи между ними

могут, т.к. всегда зависимы

Некорр	Некоррелированность случайных величин из их независимости	
+	следует	
	не следует	
	иногда следует	
	иногда не следует	

Математическое ожидание суммы случайных величин равно	
+	сумме их математических ожиданий
	произведению их математических ожиданий
	разности их математических ожиданий
	частному их математических ожиданий

Термин	Термины "некоррелированные" и "независимые" случайные величины эквивалентны для	
случая		
+	нормального распределения	
	показательного распределения	
	распределения Пуассона	
	биномиального распределения	

Утверж	Утверждение о том, что функция распределения однозначно определяется своей	
характ	характеристической функцией	
+	всегда справедливо	
	несправедливо	
	справедливо, если случайная величина непрерывна	
	справедливо, если случайная величина дискретна	

Частот	Частота события сходится по вероятности к его вероятности при увеличении числа	
опытог	опытов	
+	если событие рассматривается в схеме Бернулли	
	всегда	
	если вероятность стремится к нулю	
	если выполнены условия теоремы Чебышева	

Средне	Среднее арифметическое наблюденных значений случайной величины сходится по	
вероятн	вероятности к ее математическому ожиданию (если последнее существует)	
+	если опыты независимы и их число достаточно велико	
	если опыты независимы	
	если число их достаточно велико	
	всегда	

Дана ві	Дана выборка объема $n: x_1, x_2,, x_n$. Если каждый элемент выборки увеличить на 5	
единиц	единиц, то	
+	выборочное среднее \bar{x} увеличится на 5, а выборочная дисперсия S^2 не изменится	
	выборочное среднее \bar{x} не изменится, а выборочная дисперсия S^2 увеличится на 5	
	выборочное среднее \bar{x} увеличится на 5, а выборочная дисперсия S^2 увеличится на 25	
	выборочное среднее \bar{x} увеличится на 5, а выборочная дисперсия S^2 увеличится тоже на 5	

Дана в	Дана выборка объема $n: x_1, x_2,, x_n$. Если каждый элемент выборки увеличить в 5 раз, то	
выбор	выборочное среднее \bar{x}	
+	возрастет в 5 раз, а выборочная дисперсия S^2 увеличится в 25 раз	
	возрастет в 5 раз и выборочная дисперсия S^2 возрастет в 5 раз	
	возрастет в 25 раз, а выборочная дисперсия S^2 увеличится в 5 раз	
	возрастет в 5 раз, а выборочная дисперсия не изменится	

ξ – стандартная нормальная случайная величина. Случайная величина ξ^2 имеет	
распределение	
+	χ^2 1
	χ^2_{10}
	Фишера
	N(0,1)

Проведено 10 измерений и по ним вычислена эмпирическая дисперсия $S^2=4,5$.		
Несмен	Несмещенная оценка для генеральной дисперсии равна	
+	5	
	4,05	
	5,06	
	1,5	

Результ	Результат пяти измерений равен 1, результат трех измерений равен 2 и результат одного	
измере	измерения равен 3. Выборочное среднее и выборочная дисперсия составляют	
соответственно		
+	≈1,56; ≈0,47	
	2; 2,16	
	1,56; 0,89	
	2; 0,17	

Для уп	Для упрощения счета из всех значений выборки вычли 1280. Эмпирическая дисперсия при	
ЭТОМ	этом	
+	не изменится	
	уменьшится в 1280 раз	
	увеличится в 1280 раз	
	уменьшится на 1280	

Форму	Формула $D(-X)=D(X)$	
+	верна	
	верна только для положительных Х	
	верна только для отрицательных Х	
	никогда не верна	

Даны множества: $A = \{-2, 3, 4, 7\}$ и $B = \{1, 2, 4, 9\}$. Пересечение множеств B и A является множество: (набрать число)

Даны множества: $A = \{2, 3, 4, 8\}$ и $B = \{-1, 2, 4, 9\}$. Пересечение множеств B и A является множество: (набрать числа через запятую) 2,4

В группе из 20 студентов 16 сдали алгебру, 8 математику. Каждый студент сдал хотя бы один экзамен. Оба предмета сдали (наберите целое число)

В группе из 30 туристов 20 человек говорят по-английски, 15 по-французски, 10 на обоих языках. Не одним языком не владеют (наберите целое число)

Множеству натуральных чисел N эквивалентны множества чисел	
+ четных	
+ нечетных	
+ рациональных	
действительных	
Из 30 студентов 20 интересуется кино, а 15 — театром, каждый из студентов интересуется	
хотя бы одним. И кино и театр интересуетстудентов (наберите число)	
5	
300 руб. положили в банк под 9% годовых. Через год сумма вклада будет (наберите	
число)	
327	
Торговец закупил на все свои деньги на оптовой базе товар и продал его с наценкой 20%.	
После распродажи он решил повторить столь удачную операцию. Всего он получил	
прибыли% (наберите число)	
44	
Для открытия нового банка требуется уставной капитал 100 млн. руб. У соискателей	
имеется 700 млн. руб. Эта сумма составляет от требуемой% (наберите число)	
70	
Первый член арифметической прогрессии равен двум, десятый - десяти. Сумма первых	
десяти членов этой прогрессии равна (наберите число)	

Первый член арифметической прогрессии равен 3, пятый -11. Разность этой прогрессии равна (наберите число)

2

Шестой член арифметической прогрессии равен 16, восьмой -20, седьмой её член равен (наберите число)

18

Порядковый номер задания

Дана арифметическая прогрессия: 3, 5, 7, 9, Её определяющие параметры а и d равны (наберите числа через запятую)

3,2

Дана геометрическая прогрессия 1, 2, 4, Сумма её первых пяти членов равна (наберите число)

Прогре	Прогрессия $1, \frac{1}{2}, \frac{1}{4}, \dots$ является	
+	геометрической, $b1=1$, $q=\frac{1}{2}$	
	геометрической $b1 = \frac{1}{2}$, $q = 1$	
	арифметической, $a1=1$, $d=\frac{1}{2}$	
	арифметической, $a1 = \frac{1}{2}$, $d = 1$	

Прогр	Прогрессия 2, 8, 14, является	
+	арифметической, $a1=2$, $d=6$	
	арифметической, $a1=6$, $d=2$	
	геометрической, $b1=2$, $q=4$	
	геометрической, $b1=4$, $q=2$	

Сумма первых десяти четных чисел 2, 4, 6, ... равна (наберите число) 110

Сумма первых десяти членов натурального ряда равна (наберите число)
55

Высказ	Высказыванием является предложение	
+	Сатурн – планета солнечной системы	
+	А.С. Пушкин и М.Ю. Лермонтов – поэты	
	который час?	
	$(x+y)^2 = x^2 + 2xy + y^2$	

Сложн	Сложным высказыванием является предложение	
+	число 36 кратно 4 и 9	
+	А.С. Пушкин и М.Ю. Лермонтов – поэты	
	Да здравствует 1Мая!	
	площадь квадрата положительна	

Высказ	Высказывания а – ложно, b – истинно. Высказывание « \overline{a} и b»	
+	истинная коньюнкция	
	ложная коньюнкция	
	истинная дизъюнкция	
	ложная дизъюнкция	

Высказ	Высказывания а и b – истинны Высказывание « a или $^{\overline{b}}$ »	
+	истинная дизъюнкция	
	ложная дизъюнкция	

истинная коньюнкция
ложная коньюнкция

Высказ	Высказывания а – истинно, b – ложно Высказывание « а или b »	
+	ложная дизъюнкция	
	истинная дизъюнкция	
	ложная коньюнкция	
	истинная коньюнкция	

Высказ	Высказывания а – ложно, b – истинно Высказывание « $^{\text{из}} \overset{-}{a}$ следует b »	
+	истинная импликация	
	ложная импликация	
	ложная эквивалентность	
	истинная эквивалентность	

Высказывания а – ложно, b – истинно Высказывание « a тогда и только тогда, когда \bar{b} »	
+	истинная эквивалентность
	ложная эквивалентность
	истинная импликация
	ложная импликация

Градиент функции z = x + y в точке P0(1, -1) равен (наберите координаты вектора через запятую)

Стационарная точка для функции z = x2 + y2 - 4 имеет координаты (набрать целые числа или ноль через запятую) 0,0

Стационарная точка для функции z = x2 + 2x - y3 имеет координаты (набрать целые числа или ноль через запятую)

-1,0

Ряд Фурье функции $f(x) = |\sin x|$ (- $\pi < x < \pi$), $T = 2\pi$ в точке $x0 = \frac{\pi}{2}$ сходится к значению (наберите число)

Разбие	Разбиение множества символов алфавита {a, b, c, d, e, f, g, h} образует подмножества	
	${a, b, c}, {c, d, e, f}, {f, g, h}$	
+	${a, b, c}, {d, e, f}, {g, h}$	
	${a, b}, {c, e}, {g, h}$	
	${a, b}, {d, e, f}, {e, g, h}$	

Из двух	Из двух пар чисел $(7, 11)$ и $(11, 11)$ бинарное отношение $R(a, b) = b < a$ выполняется	
	только для первой пары	
+	ни для одной пары	
	только для второй пары	
	для обеих пар	

Из двух пар чисел (7, 11) и (11, 10) бинарное отношение R(a, b) = b < a выполняется

	только для первой пары
	для обеих пар
+	только для второй пары
	ни для одной пары

Из дву	Из двух пар чисел $(7, 11)$ и $(11, 11)$ бинарное отношение $R(a, b) = b > a$ выполняется	
+	только для первой пары	
	для обеих пар	
	только для второй пары	
	ни для одной пары	

Бинарн	Бинарное отношение R(x, y) есть отношение эквивалентности, если оно	
	транзитивно и антисимметрично	
+	рефлексивно, симметрично и транзитивно	
	транзитивно, антисимметрично и антирефлексивно	
	транзитивно, антисимметрично и рефлексивно	

Бинарн	Бинарное отношение R(x, y) есть отношение строгого порядка, если оно	
	транзитивно, антисимметрично и рефлексивно	
	рефлексивно, симметрично и транзитивно	
+	транзитивно, антисимметрично и антирефлексивно	
	транзитивно и антисимметрично	

Если в	Если в частично упорядоченном множестве М есть наибольший элемент, то в нем	
	есть наименьший элемент	
	есть хотя бы два различных максимальных элемента	
	нет ни одного минимального элемента	
+	есть ровно один максимальный элемент	

Бинарн	Бинарное отношение Р: Х < У на множестве действительных чисел является	
	Симметричным	
	Нетранзитивным	
+	Транзитивным	
+	Антисимметричным	

Бинарн	Бинарное отношение между окружностями S_1 и S_2 на плоскости: "окружность S_1	
находи	находится внутри окружности S_2 " является	
	нетранзитивным	
+	транзитивным	
+	антисимметричным	
	симметричным	

Бинарное отношение «правее» между точками на числовой прямой является		
	нетранзитивным	
	симметричным	
+	транзитивным	
+	антисимметричным	

Алфавитное упорядочение слов в русском алфавите		
	нетранзитивно	
+	антисимметрично	
+	транзитивно	
	симметрично	

Для частично упорядоченного множества М справедливо: если в М есть	
	хотя бы один максимальный элемент, то есть и наибольший
	хотя бы один минимальный элемент, то есть и наименьший

+	наибольший элемент, то есть и максимальный
+	наименьший элемент, то есть и минимальный

Число	Число сочетаний с повторениями из 6 элементов по 2 равно	
+	21	
	15	
	0	
	30	
	0	

Число ј	Число размещений без повторений из 6 элементов по 3 равно	
	125	
+	120	
	64	
	10	

Число	Число размещений без повторений из 3 элементов по 6 равно	
	729	
	216	
	120	
+	0	

Число 1	Число различных 4-значных чисел, которые можно составить из всех цифр числа 4372,	
вычисл	вычисляется по формуле	
	42	
+	4!	
	44	
	$4 \cdot 24$	

Ариф	Арифметическая операция сложения чисел Х + Ү является	
+	Коммутативной	
+	Ассоциативной	
	Некоммутативной	
	Неассоциативной	

Арифм	ифметическая операция вычитания чисел $X-Y$ является	
	ассоциативной	
+	некоммутативной	
+	неассоциативной	
	коммутативной	

Арифм	метическая операция умножения чисел Х · Ү является	
	некоммутативной	
	неассоциативной	
+	коммутативной	
+	ассоциативной	

Число ј	различных 5-значных чисел, которые можно составить из всех цифр числа 53674,				
вычисляется по формуле					
+	5!				
+	P5				
	\overline{A} 55				
	C55				

Число ј	различных 6-значных чисел, которые можно составить из всех цифр числа 285419,
вычисл	ияется по формуле
	\overline{C}_{66}

	+	A66
	+	6!
Ī		\overline{A} 66

 Число различных 4-значных нечетных чисел, которые можно составить из всех цифр числа 2874, вычисляется по формуле

 A43

 P4

 +
 3!

 +
 A33

Число сочетаний с повторениями из 5 элементов по 3 равно ______ 35

Число сочетаний без повторений из 5 элементов по 3 равно _____.

10

Число сочетаний без повторений из 3 элементов по 5 равно _____ 0

Число размещений с повторениями из 4 элементов по 3 равно _____ 64

Булева функция $X \sim Y$ тождественно равна + $(X \to Y) \& (Y \to X)$

+	$\neg(X \oplus Y)$
	$\neg (X \& Y)$
	1

		X	Y	f(X,Y)
		0	0	1
		0	1	1
		1	0	0
		1	1	0
СДНФ б	улевой функции, задаваемой таблицеі	й,		содержит
элемента	арную конъюнкцию			
	$X \overline{Y}$			
2	XY			
+	\overline{X} \overline{Y}			
+	\overline{X} Y			
	XY			